The Jordan curve theorem is non - trivial Fiona

نویسندگان

  • Fiona Rossa
  • William T. Ross
چکیده

The formal mathematical definition of a Jordan curve (a non-self-intersecting continuous loop in the plane) is so simple that one is often lead to the unimaginative view that a Jordan curve is nothing more than a circle or an ellipse. In this paper, we continue a discussion of others [1, 2, 9, 11] that a Jordan curve can be quite fantastical both in some bizarre properties such a curve might have (jagged at every point, space filling, etc.) or that such a curve can have a difficult to discover inside and outside as promised by the celebrated Jordan Curve Theorem (JCT). In this paper, we explore the JCT theorem through its history and some hand drawings which not only challenge the viewer’s preconceived notions of interior and exterior or that the JCT is a trivial result, but also challenge the reader’s notion that a curve is a cold boring object, incapable of telling an interesting story.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Jordan curve theorem is non - trivial

The formal mathematical definition of a Jordan curve (a non-self-intersecting continuous loop in the plane) is so simple that one is often lead to the unimaginative view that a Jordan curve is nothing more than a circle or an ellipse. In this paper, we continue a discussion of others [1, 2, 9, 11] that a Jordan curve can be quite fantastical both in some bizarre properties such a curve might ha...

متن کامل

Jordan derivation on trivial extension

Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.

متن کامل

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

Another Jordan curve theorem in the topological space (Z2,w)

As an alternative to the Khalimsky topology, the topology w on the digital plane Z2 was introduced by the author of this note who also proved a Jordan curve theorem for it. In the present paper, another Jordan curve theorem for the topology w is proved determining a large variety of Jordan curves in the topological space (Z2, w).

متن کامل

Jordan’s Proof of the Jordan Curve Theorem

This article defends Jordan’s original proof of the Jordan curve theorem. The celebrated theorem of Jordan states that every simple closed curve in the plane separates the complement into two connected nonempty sets: an interior region and an exterior. In 1905, O. Veblen declared that this theorem is “justly regarded as a most important step in the direction of a perfectly rigorous mathematics”...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011